Sains Malaysiana 54(9)(2025): 2211-2226
http://doi.org/10.17576/jsm-2025-5409-09
Synthesis and Characterization of Fe3O4/rGO/Ag
Composites for Electrocatalytic Oxygen Reduction Reaction (ORR)
(Sintesis dan Pencirian Komposit Fe3O4/rGO/Ag
untuk Tindak Balas Pengurangan Oksigen Elektrokatalitik (ORR))
KOMATY MARAN1,
SARAH ILYANIE ROSWADI1, MOHD AFIFI JUSOH2 & FARHANINI
YUSOFF1,*
1Faculty
of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala
Terengganu, Terengganu, Malaysia
2Faculty of Ocean Engineering Technology, Universiti Malaysia
Terengganu, 21030 Kuala Terengganu,
Terengganu, Malaysia
Received: 11 September 2024/Accepted: 18 July
2025
Abstract
The oxygen reduction
reaction (ORR) plays a pivotal role in fuel cells, making the discovery of
efficient and cost-effective catalysts to substitute platinum crucial for the
progress of sustainable energy technologies. This study investigates a new
rGO/Fe3O4/Ag composite as a potential low-cost substitute
for platinum-based cathode materials in ORR applications due to platinum’s
drawbacks. Reduced graphene oxide incorporated with iron (III) oxide and
silver nanoparticles were synthesized through a modified one-pot process,
denoted as rGO/Fe3O4/Ag. This study is the first to
utilize rGO/Fe3O4/Ag as an ORR catalyst. Synthesis began
with the formation of graphene oxide, followed by its reduction, the addition
of Fe2+ and Fe3+, and the introduction of silver
nanoparticles via silver nitrate (AgNO3) to produce the novel
electrocatalyst. Physicochemical and electrochemical characterization was
performed using Fourier transform infrared (FTIR) spectroscopy, X-ray
diffraction (XRD), scanning electron microscopy-energy dispersive X-ray
(SEM-EDX), Brunauer-Emmett-Teller (BET) analysis, and cyclic voltammetry (CV).
FTIR confirmed the presence of functional groups such as O-H, C=C, C=O, C-O,
C-Fe, and C-Ag in the nanocomposites. XRD identified average crystalline sizes,
with diffraction peaks confirming the formation of rGO/Fe3O4/Ag.
SEM-EDX analysis showed well-dispersed Fe3O4 and Ag
nanoparticles on rGO sheets, and BET analysis indicated the nanocomposites were
mesoporous, with a surface area of 81.60 m2/g for rGO/Fe3O4/Ag.
Electrochemical characterization showed that the modified rGO/Fe3O4/Ag
exhibited significant redox responses, indicating enhanced electrochemical
activity compared to the bare GCE. In the ORR analysis, the rGO/Fe3O4/Ag
demonstrated a positive shift in the cyclic voltammogram, suggesting improved
current density and superior ORR performance relative to the bare GCE. These
results strongly suggest that rGO/Fe3O4/Ag can be an
effective replacement for platinum in ORR applications as a cathode material.
Keywords: Cyclic voltammetry; electrocatalyst;
graphene; iron oxide; oxygen reduction reaction (ORR)
Abstrak
Tindak balas pengurangan
oksigen (ORR) memainkan peranan penting dalam sel bahan api, menjadikan
penemuan pemangkin yang cekap dan kos efektif untuk menggantikan platinum
penting untuk kemajuan teknologi tenaga mampan. Penyelidikan ini mengkaji
komposit rGO/ Fe3O4/Ag baharu sebagai pengganti kos
rendah yang berpotensi untuk bahan katod berasaskan platinum dalam aplikasi ORR
disebabkan oleh kelemahan platinum. Grafena oksida terkurang yang digabungkan
dengan oksida besi (III) dan nanozarah perak telah disintesis melalui proses
satu periuk yang diubah suai, dilambangkan sebagai rGO/Fe3O4/Ag.
Penyelidikan ini
merupakan kajian pertama yang menggunakan rGO/Fe3O4/Ag
sebagai katalis ORR. Sintesis bermula dengan pembentukan grafin oksida, diikuti
oleh penurunannya, penambahan Fe2+ dan Fe3+ dan
pengenalan nanozarah perak melalui nitrat perak (AgNO3) untuk
menghasilkan elektrokatalis baru. Pencirian fizikal-kimia dan elektrokimia
dilakukan dengan menggunakan spektroskopi transformasi Fourier inframerah
(FTIR), pembelauan sinar-X (XRD), mikroskop elektron pengesan-tenaga-sebaran
X-ray (SEM-EDX), analisis Brunauer-Emmett-Teller (BET) dan voltametri berkitar
(CV). FTIR mengesahkan kehadiran kumpulan berfungsi seperti O-H, C=C, C = O,
C-O, C-Fe dan C-Ag dalam nanokomposit. XRD mengenal pasti saiz kristal purata
dengan puncak difraksi mengesahkan pembentukan rGO/Fe3O4/Ag.
Analisis SEM-EDX mendedahkan nanozarah Fe3O4 dan Ag yang
tersebar dengan baik pada permukaan rGO dan analisis BET menunjukkan
nanokomposit adalah ‘mesoporous’ dengan kawasan permukaan 81.60 m2/g
untuk rGO/Fe3O4/Ag. Pencirian elektrokimia menunjukkan
bahawa rGO/Fe3O4/Ag yang diubah suai menunjukkan respons
redoks yang signifikan; peningkatan aktiviti elektrokimia berbanding dengan
GCE. Dalam analisis ORR, rGO/Fe3O4/Ag menunjukkan
pergeseran positif dalam voltamogram kitaran yang menunjukkan peningkatan
kepadatan arus dan prestasi ORR yang lebih baik berbanding GCE sahaja. Hasil
ini menunjukkan bahawa rGO/Fe3O4/Ag boleh menjadi
pengganti platinum yang berkesan dalam aplikasi ORR sebagai bahan katod.
Kata kunci: Grafin; katalis; oksida besi;
tindak balas pengurangan oksigen (ORR); voltametri berkitar
REFERENCES
Accogli, A., Bertoli, L., Panzeri, G.,
Gibertini, E., Pesce, R., Bussetti, G. & Magagnin, L. 2021. Electrochemical
characterization of magnetite (Fe3O4) nanoaggregates in
acidic and alkaline solutions. ACS Omega 6(41): 26880-26887.
Ajinkya, N., Yu, X.,
Kaithal, P., Luo, H., Somani, P. & Ramakrishna, S. 2020. Magnetic iron
oxide nanoparticle (IONP) synthesis to applications: Present and future. Materials 13(20): 4644.
Azadmanjiri, J.,
Srivastava, V.K., Kumar, P., Wang, J. & Yu, A. 2018. Graphene-supported 2D
transition metal oxide heterostructures. Journal of Materials Chemistry A 6(28): 13509-13537. https://doi.org/10.1039/c8ta03404d
Baldovino-Medrano, V.G.,
Niño-Celis, V. & Isaacs Giraldo, R. 2023. Systematic analysis of the
nitrogen adsorption–desorption isotherms recorded for a series of materials
based on microporous–mesoporous amorphous aluminosilicates using classical
methods. Journal of Chemical & Engineering Data 68(9): 2512-2528.
Chandrasekaran, S., Ma,
D., Ge, Y., Deng, L., Bowen, C., Roscow, J., Zhang, Y., Lin, Z., Misra, R.D.K.
& Li, J. 2020. Electronic structure engineering on two-dimensional (2D)
electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen
evolution reactions. Nano Energy 77: 105080.
Chen, T., Geng, Y., Wan,
H., Xu, Y., Zhou, Y., Kong, X., Wang, J., Qi, Y., Yao, B. & Gao, Z. 2021.
Facile preparation of Fe3O4/Ag/RGO reusable ternary
nanocomposite and its versatile application as catalyst and antibacterial
agent. Journal of Alloys and Compounds 876: 160153.
Çıplak, Z. &
Yıldız, N. 2023. Ag@ Fe3O4 nanoparticles
decorated NrGO nanocomposite for supercapacitor application. Journal of
Alloys and Compounds 941: 169024.
Cui, C., Du, G., Zhang,
K., An, T., Li, B., Liu, X. & Liu, Z. 2020. Co3O4 nanoparticles anchored in MnO2 nanorods as efficient oxygen
reduction reaction catalyst for metal-air batteries. Journal of Alloys and
Compounds 814: 152239.
https://doi.org/https://doi.org/10.1016/j.jallcom.2019.152239
Cui, X., Gao, L., Yang, Y.
& Lin, Z. 2022. Heteroatom-doped graphene-based electrocatalysts for ORR,
OER, and HER. In Micro and Nano Technologies: Nanomaterials for
Electrocatalysis, edited by Maiyalagan, T., Khandelwal, M., Kumar, A.,
Nguyen, T.A. & Yasin, G. Elsevier. pp. 145-168.
Darabdhara, G., Das, M.R.,
Singh, S.P., Rengan, A.K., Szunerits, S. & Boukherroub, R. 2019. Ag and Au
nanoparticles/reduced graphene oxide composite materials: Synthesis and
application in diagnostics and therapeutics. Advances in Colloid and
Interface Science 271: 101991.
Fan, J., Chen, M., Zhao,
Z., Zhang, Z., Ye, S., Xu, S., Wang, H. & Li, H. 2021. Bridging the gap
between highly active oxygen reduction reaction catalysts and effective
catalyst layers for proton exchange membrane fuel cells. Nature Energy 6(5): 475-486.
Fodjo, E.K., Gabriel,
K.M., Serge, B.Y., Li, D., Kong, C. & Trokourey, A. 2017. Selective
synthesis of Fe3O4AuxAgynanomaterials and their potential
applications in catalysis and nanomedicine. Chemistry Central Journal 11(1): 58. https://doi.org/10.1186/s13065-017-0288-y
Ganapathe, L.S., Mohamed,
M.A., Mohamad Yunus, R. & Berhanuddin, D.D. 2020. Magnetite (Fe3O4)
nanoparticles in biomedical application: From synthesis to surface
functionalisation. Magnetochemistry 6(4): 68.
Goyal, D., Dang, R.K.,
Goyal, T., Saxena, K.K., Mohammed, K.A. & Dixit, S. 2022. Graphene: A
path-breaking discovery for energy storage and sustainability. Materials 15(18): 6241.
Gu, W., Xu, J., Sun, J.
& Zhao, T. 2023. A durable and robust Fe–N–C electrocatalyst for oxygen
reduction reactions by introducing Ti3C2–TiO2 as radical scavengers. International Journal of Hydrogen Energy 48(13):
5323-5332. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.11.048
He, X., Long, X., Wang,
P., Wu, H., Han, P., Tang, Y., Li, K., Ma, X. & Zhang, Y. 2021.
Interconnected 3D Fe3O4/rGO as highly durable
electrocatalyst for oxygen reduction reaction. Journal of Alloys and
Compounds 855: 157422.
He, Y., Liu, S., Priest,
C., Shi, Q. & Wu, G. 2020. Atomically dispersed metal–nitrogen–carbon
catalysts for fuel cells: Advances in catalyst design, electrode performance,
and durability improvement. Chemical Society Reviews 49(11): 3484-3524.
Hsu, C-Y., Ali, E.,
Al-Saedi, H.F.S., Mohammed, A.Q., Mustafa, N.K., Talib, M.B., Radi, U.K.,
Ramadan, M.F., Ami, A.A. & Al-Shuwaili, S.J. 2024. A chemometric approach
based on response surface methodology for optimization of antibiotic and
organic dyes removal from water samples. BMC Chemistry 18(1): 5.
Huang, M., Liu, S., Gong, S., Xu, P., Yang, K.,
Chen, S., Wang, C. & Chen, Q. 2019. Silver nanoparticles encapsulated in an
N-doped porous carbon matrix as high-active catalysts toward oxygen reduction
reaction via electron transfer to outer graphene shells. ACS Sustainable
Chemistry & Engineering 7(19): 16511-16519.
Idris, A. M., Shinger, M. I., Barkaoui, S.,
Khan, K., Idris Abdu, H., Edris, M. M., & Lu, X. 2018. Fabrication of
rGO-Fe3O4 Hybrid Functionalized with Ag3PO4 as photocatalyst for degradation of
Rhodamime B under Visible Light Irradiation. Materials Research Bulletin 102: 100–107.
International Renewable Energy Agency. 2023. Renewables
are the Solution to Malaysia’s Sustainable Future and Renewed Climate Ambition.
https://www.irena.org/News/pressreleases/2023/Mar/Renewables-Are-the-Solution-to-Malaysias-Sustainable-Future-and-Renewed-Climate-Ambition
Iriarte‑Mesa, C., López, Y.C., Matos‑Peralta,
Y., de la Vega‑Hernández, K. & Antuch, M. 2020. Gold, silver and iron
oxide nanoparticles: Synthesis and bionanoconjugation strategies aiming to
electrochemical applications. Surface-Modified Nanobiomaterials for
Electrochemical and Biomedicine Applications 378(12): 93-132.
Jaafar, E., Kashif, M., Sahari, S.K. &
Ngaini, Z. 2018. Study on morphological, optical and electrical properties of
graphene oxide (GO) and reduced graphene oxide (rGO). Materials Science
Forum 917: 112-116.
Jiang, P.Y., Xiao, Z.H., Wang, Y.F., Li, N.
& Liu, Z.Q. 2021. Enhanced performance of microbial fuel cells using Ag
nanoparticles modified Co, N co-doped carbon nanosheets as bifunctional cathode
catalyst. Bioelectrochemistry 138: 107717.
Khan, K., Tareen, A.K., Aslam, M., Zhang, Y.,
Wang, R., Ouyang, Z., Gou, Z. & Zhang, H. 2019. Recent advances in
two-dimensional materials and their nanocomposites in sustainable energy
conversion applications. Nanoscale 11(45): 21622-21678.
Kumar, K., Gairola, P., Lions, M.,
Ranjbar-Sahraie, N., Mermoux, M., Dubau, L., Zitolo, A., Jaouen, F. &
Maillard, F. 2018. Physical and chemical considerations for improving catalytic
activity and stability of non-precious-metal oxygen reduction reaction
catalysts. ACS Catalysis 8(12): 11264-11276.
Kumar, V., Gupta, R.K., Gundampati, R.K.,
Singh, D.K., Mohan, S., Hasan, S.H. & Malviya, M. 2018. Enhanced electron
transfer mediated detection of hydrogen peroxide using a silver
nanoparticle–reduced graphene oxide–polyaniline fabricated electrochemical
sensor. RSC Advances 8(2): 619-631.
Mohammed, H., Al-Othman, A., Nancarrow, P.,
Tawalbeh, M. & Assad, M.E.H. 2019. Direct hydrocarbon fuel cells: A
promising technology for improving energy efficiency. Energy 172:
207-219.
Muhamad, N.B. & Yusoff, F. 2018. The
physical and electrochemical characteristic of gold nanoparticles supported
pedot/graphene composite as potential cathode material in fuel cells. Malaysian
Journal of Analytical Sciences 22(6): 921-930.
Peng, L. & Wei, Z. 2020. Catalyst
engineering for electrochemical energy conversion from water to water: Water
electrolysis and the hydrogen fuel cell. Engineering 6(6): 653-679.
Saha, S., Routray, K.L., Hota, P., Dash, B.,
Yoshimura, S., Ratha, S. & Nayak, T.K. 2024. Structural, magnetic and
dielectric properties of green synthesized Ag doped NiFe2O4 spinel ferrite. Journal of Molecular Structure 1302: 137409.
Shao, Q., Li, F., Chen, Y. & Huang, X.
2018. The advanced designs of high‐performance platinum‐based
electrocatalysts: Recent progresses and challenges. Advanced Materials
Interfaces 5(16): 1800486.
Shao, Y., Yin, G. & Gao, Y. 2007.
Understanding and approaches for the durability issues of Pt-based catalysts
for PEM fuel cell. Journal of Power Sources 171(2): 558-566.
https://doi.org/https://doi.org/10.1016/j.jpowsour.2007.07.004
Sharma, R.K., Yadav, S., Dutta, S., Kale, H.B.,
Warkad, I.R., Zbořil, R., Varma, R.S. & Gawande, M.B. 2021. Silver
nanomaterials: Synthesis and (electro/photo) catalytic applications. Chemical
Society Reviews 50(20): 11293-11380.
Shen, Y., Wang, Y., Fang, S., Park, J.K., Pan,
C., Chen, Y., Zhu, N. & Wu, H. 2021. Novel magnetically separable Ag@
AgCl-Fe3O4/RGO nanocomposites for enhanced dielectric
barrier discharge plasma reaction for high-performance water decontamination. Desalination
and Water Treatment 223: 335-349.
Singh, S.K., Takeyasu, K. & Nakamura, J.
2019. Active sites and mechanism of oxygen reduction reaction electrocatalysis
on nitrogen‐doped carbon materials. Advanced Materials 31(13):
1804297.
Smith, A.T., LaChance, A.M., Zeng, S., Liu, B.
& Sun, L. 2019. Synthesis, properties, and applications of graphene
oxide/reduced graphene oxide and their nanocomposites. Nano Materials
Science 1(1): 31-47.
Song, K., Wei, J., Dong, W., Zou, Z. &
Wang, J. 2022. Fe3O4/N-CNTs derived from hypercrosslinked
carbon nanotube as efficient catalyst for ORR in both acid and alkaline
electrolytes. International Journal of Hydrogen Energy 47(47):
20529-20539.
Sujiono, E.H., Zabrian, D., Dahlan, M.Y., Amin,
B.D. & Agus, J. 2020. Graphene oxide based coconut shell waste: Synthesis
by modified Hummers method and characterization. Heliyon 6(8): e04568.
Tarcan, R., Todor-Boer, O., Petrovai, I.,
Leordean, C., Astilean, S. & Botiz, I. 2020. Reduced graphene oxide today. Journal
of Materials Chemistry C 8(4): 1198-1224.
Tipsawat, P., Wongpratat, U., Phumying, S.,
Chanlek, N., Chokprasombat, K. & Maensiri, S. 2018. Magnetite (Fe3O4)
nanoparticles: Synthesis, characterization and electrochemical properties. Applied
Surface Science 446: 287-292.
Yusoff, F., Suresh, K. & Khairul, W.M.
2022. Synthesis and characterization of reduced graphene oxide/iron
oxide/silicon dioxide (rGO/Fe3O4/SiO2)
nanocomposite as a potential cathode catalyst. Journal of Physics and
Chemistry of Solids 163: 110551.
Yusoff, F., Rosli, A.R. & Ghadimi, H. 2021.
Synthesis and characterisation of gold
nanoparticles/poly3,4-ethylene-dioxythiophene/reduced-graphene oxide for
electrochemical detection of dopamine. Journal of the Electrochemical
Society 168(2): 26509.
Zhang, D., Liu, T., Cheng, J., Cao, Q., Zheng,
G., Liang, S., Wang, H. & Cao, M-S. 2019. Lightweight and high‑performance
microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro
Letters 11(1): 38.
Zhang, H., Zhang, G., Tang, M., Zhou, L., Li,
J., Fan, X., Shi, X. & Qin, J. 2018. Synergistic effect of carbon nanotube
and graphene nanoplates on the mechanical, electrical and electromagnetic
interference shielding properties of polymer composites and polymer composite
foams. Chemical Engineering Journal 353: 381-393.
Zhao, H. & Yuan, Z.Y. 2021.
Surface/interface engineering of high-efficiency noble metal-free
electrocatalysts for energy-related electrochemical reactions. Journal of
Energy Chemistry 54: 89-104.
Zhao, S., Jiang, H., Li, J., Meng, X., Chao,
T., Zhang, Z., Zhang, P., Gao, Y., & Cao, D. 2018. Amorphizing of Ag
Nanoparticles under Bioinspired One‐step Assembly of Fe3O4‐Ag/rGO
Hybrids via Self‐redox Process with Enhanced Activity. Applied
Organometallic Chemistry 32(8): e4428.
Zhou, Y., Chen, G., Wang, Q., Wang, D., Tao,
X., Zhang, T., Feng, X., & Müllen, K. 2021. Fe-N-C Electrocatalysts with
Densely Accessible Fe-N4 Sites for Efficient Oxygen Reduction Reaction. Advanced
Functional Materials 31(34): 2102420.
*Corresponding author; email:
farhanini@umt.edu.my